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EXECUTIVE SUMMARY 

The transportation sector is one of the most significant contributing sectors to emissions in 

the United States. In 2017, approximately 29% of total greenhouse gas (GHG) emissions in the 

U.S. came from the transportation sector, to which passenger cars and trucks (medium-duty and 

heavy-duty) contributed 59% and 23%, respectively. Many state and private fleet agencies have 

announced their visions of zero-emission fleet programs. Adopting alternative fuel vehicles 

(AFVs) is a promising option in moving toward these programs. AFVs are accompanied by several 

unique benefits, such as lower emissions, low operating and maintenance costs, and higher fuel 

economy. Despite AFVs’ valuable benefits, a complex tradeoff exists between adopting AFVs and 

coping with their financial and technical issues, leading to an intricate decision-making process 

that is crucial for a fleet management system. 

Consequently, in this study, the feasibility of introducing AFVs into the Utah Department 

of Transportation (UDOT) fleet was investigated, and a proper framework was devised and tested 

with real-world data. To achieve this goal, optimizing fleet life-cycle costs through a mathematical 

modeling framework was proposed. A mixed-integer linear model was adapted from the literature 

and modified, allowing UDOT to determine which type of vehicle needed to be purchased and 

salvaged each year to minimize the total ownership costs of the fleet. This study also implemented 

the Rolling Horizon (RH) optimization approach for the fleet replacement model to address future 

market changes. The RH approach allows the optimization framework to account for the 

uncertainties in future fuel prices, the purchase price of vehicles, and maintenance costs by 

adjusting fleet replacement decisions based on the latest data available. 

Ultimately, to evaluate the efficacy of the proposed framework, a case study utilizing 

UDOT fleet data was investigated. The fleet-related data were gathered from the “Networkfleet” 

website that stores UDOT fleet data. We selected vehicles operated by UDOT from October 2018 

to September 2019 as our initial fleet composition. Information regarding other parameters 

influencing the calculation of life-cycle costs was obtained through published papers and reports. 

A sensitivity analysis was conducted to showcase vehicle replacement decisions for different fuel 

price scenarios, addressing possible future cost fluctuations. The findings indicated that the choice 

of fleet composition depends substantially on the annual usage of fleet vehicles and changes in 
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fuel prices. The results also demonstrated that the RH approach could provide more cost-efficient 

fleet replacement decisions than other currently utilized models. 
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INTRODUCTION 

1.1 Problem Statement 

Introducing alternate fuel vehicles (AFVs) into a fleet system offers various benefits, 

including low fuel and maintenance costs and higher fuel efficiency (LeSage, 2015). AFVs in a 

fleet system can also contribute to the solution of environmental issues by lowering greenhouse 

gas (GHG) emissions. In 2017, approximately 29% of total GHG emissions in the U.S. came from 

the transportation sector (the highest contributing sector for emissions), to which vehicles (light-

duty) and trucks (medium-duty and heavy-duty) contributed 59% and 23%, respectively (U.S. 

Environmental Protection Agency, 2019). Consequently, the federal and local governments in the 

U.S. prioritized the introduction of AFVs into fleet systems, especially medium- and heavy-duty 

vehicles (Baker et al., 2016). The American Public Transportation Agency (APTA) published a 

statistical report indicating an increase in the adoption of AFVs for public transit fleets, based on 

comparisons of data from 2008 to 2019. For example, the proportion of public buses powered by 

natural gas increased from 18.5% in 2008 to 28.5% in 2018, according to APTA (Cromwick, 

2019). Moreover, AFVs offer higher fuel economy and lower air pollutant emissions, making 

AFVs a viable option for fighting climatic challenges and achieving air quality policy goals (Baker 

et al., 2016). 

Technology development has provided several viable AFV options for fleet purchase 

choices, such as hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), battery 

electric vehicles (BEV), compressed natural gas vehicles (CNGV), and liquefied petroleum gas 
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vehicles (LPGV). Although AFVs ensure reduced GHG emissions, the lack of sufficient 

infrastructure and the necessity of high initial funding to purchase AFVs are challenging issues for 

transportation agencies and make it difficult to arrive at swift decisions regarding the adoption of 

AFVs (Stephan and Sullivan, 2004; Schwoon, 2007; Kang and Recker, 2014). A complex trade-

off exists between adopting AFVs and coping with their financial and technical issues, which leads 

to an intricate decision-making process that is crucial for the fleet management system. The lack 

of data regarding new and upcoming technologies renders assumptions of future scenarios even 

more complicated when adopting specific AFVs, such as EV and HEV (Li et al., 2019). 

It is common practice for fleet management agencies to introduce AFVs into their fleet 

systems when purchasing replacement vehicles. Different fleet management agencies use different 

replacement methods based on their goals, budgets, and policies. The replacement method is one 

of the key measures for cost-effective and efficient fleet management operations for any 

organization, according to the AASHTO Maintenance Subcommittee. Planned replacement 

ensures vehicle safety and minimizes maintenance and operating costs. Each organization has its 

own replacement guidelines that ensure an efficient fleet management system. Some organizations 

make replacement decisions based on specific factors, such as vehicle age, mileage, life-cycle cost, 

and maintenance cost. However, the ultimate objective of a fleet replacement system is to introduce 

AFVs into a fleet while optimizing the total ownership costs of the fleet. In general, most transit 

agencies replace their vehicles either after the vehicles reach a fixed age (12 to 15 years), cross a 

certain maintenance cost threshold, or cross a specific mileage limit (Sarwar and Beg, 2019). A 

few replacement methods analyze life-cycle costs to make replacement decisions. 
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Selecting AFVs for introduction into a fleet is a crucial decision because the purchasing 

price of AFVs is typically higher than conventional vehicles. Thus, a fleet replacement model 

(FRM) was developed in the form of a linear optimization program that can yield the best 

composition of vehicles to be introduced into the fleet. The FRM optimizes the total costs of 

ownership in terms of purchasing price, fuel cost, maintenance cost, and emission rate. The FRM 

was utilized in this project to evaluate the feasibility of introducing AFVs into UDOT’s fleet. 

Additionally, a Rolling Horizon (RH)-based approach was proposed and used to account for 

uncertainties on fuel prices, AFV purchase prices, and technological developments. The RH 

approach allows agencies to consider the change in prices/costs and to modify the replacement 

decisions based on the updated prices/costs. 

1.2 Objectives 

The main objective of this project was to check the feasibility of introducing AFVs into 

the fleet of UDOT. With this aim, the FRM was developed to minimize the total costs of ownership 

over a particular time horizon. This FRM considers purchase cost, maintenance cost, fuel cost, and 

salvage cost. Ultimately, the FRM indicates which types of vehicles should be purchased and 

salvaged and in what year to minimize the total fleet cost. This model was successfully applied to 

UDOT’s fleet, benefiting from their high-resolution real-time data. The results provide insights 

and plans for the optimal adoption of AFVs. 
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Scope 

A mixed-integer linear model was developed and used to find the number of purchased and 

salvaged vehicles and types of vehicles. As future technologies are complicated to predict, the RH 

approach was applied to this model to obtain the best result. All cost-related data used for 

validating the model were retrieved from the literature. The current UDOT fleet composition was 

used for validating the model. The vehicle range category was prepared based on the trip data of 

the UDOT fleets. Although the model utilized current data to guide fleet composition decisions, 

the RH approach made the model more adaptable to future technologies than other approaches in 

the literature. The outcome of the case study provides insight into the probable plans that can 

positively reshape the future of UDOT’s fleet. 

1.4 Outline of Report 

The rest of the article is organized as follows. Chapter 2, Research Methods, discusses the 

models and methodologies reported in the literature that are used by DOTs as current practices. 

Chapter 3, Data Collection, includes collecting and categorizing UDOT’s vehicle data and a 

description of other used parameters, such as purchasing price, energy cost, maintenance cost, and 

salvage price. Chapter 4, Replacement Model, is dedicated to formulating the model and 

introducing the RH algorithm. Section 4 also contains descriptions of the scenarios used for 

sensitivity analysis. Chapter 5, Results, contains the numerical results and cost analyses generated 

by different approaches. Finally, chapter 6, Conclusions, concludes the report and discusses future 

research directions. 
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RESEARCH METHODS 

Overview 

In this chapter, we review previous studies on adopting AFVs and describe their benefits 

and drawbacks. Next, real-life practices used by different DOTs, future technologies and 

challenges, and the concept of the RH approach are introduced. 

Literature Review 

Several types of models for a fleet replacement system have been described in previous 

studies. Optimization frameworks are widely used to model vehicle or equipment replacements. 

Table 2.1 includes a summary of some of the studies that had the same objective. Simms et al. 

(1984) developed a dynamic linear programming (DLP) model. They conducted a case study of 

an urban bus fleet that spanned different ages and mileage. Their model was constructed based on 

detailed data, i.e., varying capacity constraints, acquisition, operating and salvage cost functions 

for varying ages and mileages. The model generated an optimal policy for buying, operating, and 

selling vehicles. Hartman (1999) proposed a linear programming (LP) model for minimizing costs 

associated with an equipment replacement schedule in which the utilization of vehicles is 

considered to be a decision variable. The proposed model merged replacement and utilization 

decisions. The formulation considered operating costs as a function of utilization, where utilization 

is dependent on deterministic demand. Subsequently, Hartman (2004) proposed a Stochastic 
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Dynamic Programming (SDP) model to determine an optimal equipment replacement schedule, 

along with an optimal utilization level for two equipment units. 

A Deterministic Dynamic Programming (DDP) model was proposed to solve the 

Equipment Replacement Optimization (ERO) problem for the vehicle fleet of the Texas 

Department of Transportation (Fan et al., 2012). The model was programmed based on both 

Bellman and Wanger formulations. The Bellman formulation decides to either keep or replace a 

vehicle, and the Wanger formulation fixes the number of years a vehicle is utilized. The vehicle 

replacement decision was made based on a comparison of the vehicles’ utilization costs. However, 

this approach did not consider the optimization of heterogeneous vehicles. Arifin et al. (2017) 

applied the same approach to developing a city bus replacement model. 

Another popular approach involves the computation of the economic life for a fleet vehicle 

to calculate the life-cycle cost, known as Life-Cycle Cost Analysis (LCCA). LCCA modeling 

generally follows a nonlinear programming (NLP) approach. LCCA provides only one criterion 

for vehicle replacement: the “economic life.” Economic life includes purchasing price, operating 

costs, and salvage price (Eilon et al., 1966; Chee, 1975; Weissmann et al., 2003). A vehicle is 

replaced when it either reaches its economic life limit or crosses the maintenance cost threshold. 

LCCA, combined with the multi-attribute ranking method, provides more cost-efficient 

replacement plans than a single age limit (economic life) (Weissmann et al., 2003). 
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Literature Source Model Case Study Purpose 

Eilon, S., King, J.R. and NLP Fork lift truck LCCA 

Hutchinson D.E. (1966) 

Chee, P.C.F. (1975) NMM* Ontario Hydro fleet LCCA 

Simms, B.W., Lamarre, DLP Urban Transit bus fleet Total cost minimization 

B.G., and Jardine, A.K.K. 

(1984) 

Hartman, J.C. (1999) LP Multi-asset case Total cost minimization 

Weissmann J., Weissmann NLP Texas Department of LCCA, along with a multi-

A.J., and Gona S. (2003) Transportation (TxDOT) attribute ranking method 

fleet 

Hartman, J.C. (2004) SDP Two asset case Total cost minimization 

Fan, W., Machemehl, R.B., DDP TxDOT fleet Total cost minimization 

and Gemar, M.D. (2012) 

Arifin, D., Yusuf, E. (2017) DDP City bus of Bandung, Total cost minimization 

Indonesia 

* No Mathematical Model 

Procedures Used in the Real World 

In practice, fleet management agencies typically adopt straightforward approaches when 

making vehicle replacement decisions. The National Academies of Sciences, Engineering, and 

Medicine (NASEM, 2014) surveyed the fleet replacement practices of 38 different DOTs. The 

book classified the methodologies into six groups, including: 

1. Replacement cycle policies based on formal analysis of life-cycle costs 

2. Replacement cycle policies based on judgment, experience, rules of thumb, etc. 

3. Multiyear fleet replacement plans showing future replacement dates and costs by asset 

4. Replacement lists that identify assets meeting pre-defined criteria (e.g., age or mileage) 
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5. Methods for prioritizing specific assets for replacement when funds are insufficient to 

replace every asset that should be replaced 

6. Repair versus replace tools or policies that target specific assets needing expensive repairs 

Among the 38 DOTS, a significant proportion of them (17 of 38) follow “decision criteria-

based replacement eligibility lists,” where criteria of different features (i.e., age, mileage, etc.) are 

pre-defined. Nine DOTs replace their fleet vehicles based on past practices, such as judgment and 

rules of thumb. Other DOTS replace their fleets by calculating life-cycle costs and comparing 

repair costs with replacement costs, resulting in multi-year replacement plans. 

Zhu et al. (2017) investigated the fleet replacement methodology of 50 states of the U.S. 

and eight Canadian provinces and identified 17 replacement decision-making factors. The most 

common factors were age/equipment life, usage, repair cost, and manual evaluation. Their study 

categorized fleet replacement practices into three classes: Life-Cycle Cost Analysis (LCCA), Pre-

Defined Threshold (PDT) Method, and Mathematical Ranking Model (MRM). 

DOTs use different tools and approaches for the fleet replacement problem based on their 

pre-defined criteria and budgets. Fleet replacement practices of various DOTs are discussed in the 

following subsections. 

2.3.1 FDOT 

The Florida Department of Transportation (FDOT) developed Equipment Replacement 

Criteria, which were used as the basis for creating the Replacement Eligibility Factor (REF) 

calculator. A score is calculated for each vehicle using the REF calculator considering age, 
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odometer reading, vehicle condition, activity for the last year, lifetime maintenance cost, 

maintenance cost within the previous 12 months, and the cost per mile. For each class of fleet, 

threshold values are different for different factors (e.g., age and costs). For instance, if the total 

points exceed 300, the vehicle is eligible for replacement (Florida Fish and Wildlife Conservation 

Commission, 2011; Florida Department of Management Services, 2009). Eventually, Mercury 

(2011) made a business proposal in which they proposed a method to use LCA to replace fleet 

vehicles (Florida Fish and Wildlife Conservation Commission, 2011). 

2.3.2 TxDOT 

The Texas Department of Transportation (TxDOT) utilizes a uniform approach to 

determine equipment (i.e., vehicle, machine, etc.) replacement criteria. With the collaboration of 

the University of Texas, TxDOT developed a model named the Texas Equipment Replacement 

Model (TERM), which was developed in the SAS environment as a Statistical Model. TERM 

generates an equipment replacement priority list using two types of modules: 1) the Life-Cycle 

Cost (LCC) Ranking Module and 2) the Multi-Attribute Priority Ranking Module, both of which 

provide a similar interpretation (Weissmann and Weissmann, 2003). 

The LCC model utilizes life-cycle cost analysis (LCCA) and a scoring function (called 

Trendscore, a new concept developed for TERM) to create a replacement priority list. LCCA can 

generate the most economical life cycle for any vehicle based on purchasing, resale value, life 

repair cost, fuel cost, mileage/hours of usage, age, data variables, equipment status, and other 

indirect costs. Through Trendscore, the life-cycle cost history/trend is used to prioritize any vehicle 

whose life-cycle cost has been increasing. The model then calculates the duration of this increase 
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and which vehicle has the longest increase duration. The steeper the cost slope, the higher the 

Trendscore for any vehicle. 

The second module in TERM is the Multi-Attribute Priority Ranking Module. This module 

provides a percentile for equipment pieces in the fleet, which shows the percentage of the fleet that 

is in the worst condition. This priority rank is calculated by a weighted method where weights are 

defined by TxDOT. The four attributes used in calculations of priority rank are Trendscore (life-

cycle cost trend), repair cost, cumulative usage, and cumulative downtime. Any equipment with a 

higher percentile in the module gets a higher priority replacement. 

2.3.3 Caltrans 

The California Department of Transportation (Caltrans) previously used Vehicles Meets 

Criteria (VMC), where they considered equipment age, usage, and life-to-date repair costs. 

Threshold values were assigned based on historical data to identify replacement candidates. Later, 

they started using Fleet Utilization Score. This score consists of four digits, representing the 

equipment’s age, total usage (mileage/hours), usage over the previous year, and the ratio of repair 

costs over its standard repair cost. The standard repair cost is half of a vehicle's capital cost. The 

score is the percentage of the actual utilization of the pre-defined standard. This approach helps to 

prioritize the equipment that needs to be replaced. Equipment with higher percentages is prioritized 

for replacement (Scora, 2017). 
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2.3.4 PennDOT 

The Pennsylvania Department of Transportation (PennDOT) uses a Microsoft Access-

based tool named Equipment Life-Cycle Prediction Tool. The ultimate goal of this tool can be 

divided into three parts: 1) Maintenance Cost Prediction, 2) Prioritized Equipment Replacement, 

and 3) Equipment Budget Allocation. Data is imported from the SAP Plant Maintenance Tool for 

further analysis (Vance et al., 2014). SAP is a data processing and managing tool that also performs 

the task of resource planning. Equipment information, equipment fuel usage, equipment hours, 

and individual equipment maintenance costs are used as the inputs. This tool defines two cost 

ratios used to compare the efficiency of the equipment’s life cycles. Cost ratio 1 summarizes the 

cumulative maintenance costs and repair costs divided by the cumulative personnel hours charged 

to any piece of equipment. Cost ratio 2 is the summation of the cumulative maintenance costs and 

repair costs divided by the cumulative fuel usage of the equipment. For the life-cycle prediction 

tool, PennDOT used data recorded from July 2007 to September 2012. Hence, the tool was 

predicted to lose its predictive value accuracy in the future due to changing practices. Thus, data 

and equations involved in the different steps need to be reanalyzed periodically to address this 

issue. 

2.3.5 MnDOT 

The Minnesota Department of Transportation (MnDOT) is currently using M5 software 

from AssetWorks (an assistance-providing fleet management company) to manage their fleet. 

However, the M5 fleet replacement tool was found to not be useful for MnDOT. Hence, they 

developed a Microsoft Excel-based life-cycle calculation tool. This tool uses predetermined life 
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cycles and available funds allocated to the replacement of equipment. As the pre-defined life-

cycles developed may have been outdated, MnDOT is currently re-evaluating this tool. This tool 

utilizes data from M5, captures only ownership costs, and anticipates a replacement cost at the end 

of the lifecycle using a 3% inflationary factor. Monthly and annual ownership expenses for the 

equipment are also predicted by this tool. 

2.3.6 NCDOT 

The North Carolina Department of Transportation (NCDOT) developed “Fleet Analysis & 

Economic Modeling,” a Microsoft Excel-based application used to manage their fleet. This model 

was developed based on engineering economics. Therefore, this model contains market value 

modeling parameters (i.e., depreciation rate, minimum resale value, vehicle’s life), CPI (Consumer 

Price Index) data, and data from SAP and the Business Warehouse database. Raw data that are 

analyzed based on vehicle classification and economic factors (i.e., Time Value of Money, 

Inflation Rate) need to be updated according to the base year. The data analysis section considers 

annual use (mileage/hours), age, total operating cost, and many other factors. The application 

analyzes the NCDOT fleet data in terms of depreciation rate, cost, and usage trends. Then, the 

optimal life for a fleet of different classes is calculated based on life-to-date equivalent uniform 

annual cost (LTD EUAC) and life-to-date (LTD) cost per mile (Kauffmann et al., 2013). 

2.3.7 ODOT 

The Oregon Department of Transportation (ODOT), along with Oregon State University, 

completed a study in 2009 in which they investigated different fleet replacement methodologies. 
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They designed a simulation-based model in Visual Basic. This model was used to analyze data of 

all vehicles separately. The simulation was designed as a three-dimensional matrix: 1) time, 2) 

identification of each vehicle, and 3) data regarding mileage, repair cost, maintenance cost, energy 

cost, and many other direct and indirect costs were considered as the third dimension. This 

simulation used ten different replacement priority ranking methods. The best method was 

determined based on a comparison among all methods. Based on the simulation, the interaction 

between replacement methods and replacement age was found to be significant. Subsequently, the 

study proposed a logic model where replacement ranking was made based on age, cost, and usage 

(Kim and Porter, 2009). 

The simulation model was a product of the “Access System” program, providing 

management services for the ODOT fleet system. In 2013, “AssetWorks” was assigned the 

responsibility of managing the ODOT fleet system. Hence, ODOT can no longer utilize the 

simulation. “AssestWorks” introduced a new model that follows the methodology of the 

simulation-based model developed by “Access System.” ODOT is currently using a Microsoft 

Excel-based approach, designed based on repair costs, age, and utilization. Table 2.2 summarizes 

the tools and methodologies used by different DOTs. 

Table 2.1 Methodology Adopted by DOTs 

State DOT Tool Name Software/App/Tool Methodology 

Florida Replacement Eligibility Factor (REF) 

Calculator 

Manual PDT 

Texas Texas Equipment Replacement Model 

(TERM) 

SAS LCCA & 

MRM 

California Vehicles Meets Criteria (VMC) Unknown PDT 
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Pennsylvania Equipment Life-Cycle Prediction Tool Microsoft Access MRM 

Minnesota Unknown Microsoft Excel PDT 

North 

Carolina 

Fleet Analysis & Economic Modeling Microsoft Excel LCCA 

Oregon Unknown Microsoft Excel MRM 

Future Technologies, Opportunities, and Challenges 

Various technologies have provided numerous opportunities for AFVs over the last few 

years. EVs have been one of the most attractive additions to AFV options. Other new additions, 

such as hybrid pickups and hydrogen fuel cell trucks, are on their way to entering the market. Fleet 

agencies are already prioritizing new technologies and are planning to convert their fleet into a 

fleet with zero emissions. The State of California awarded the South Coast Air Quality 

Management District (SCAQMD) $23.6 million for a zero-emission truck development and 

demonstration study in 2016. Having 43 electric and hybrid plug-in hybrid trucks, their fleet 

represented the first large-scale demonstration of zero-emission Class 8 trucks that involved major 

manufacturers, including BYD, Kenworth, Peterbilt, and Volvo (BYD, 2016). 

In the trucking industry, payload capacity is a decisive factor in the adoption of AFV. The 

weight of the battery pack is a challenge to the adoption of an electric truck. The empty truck 

weight is generally in the range of 6,000-8,000 kg (13,000-18,000 lbs.) without the weight of the 

battery pack. The required battery pack is 1,000 kWh and 2,000 kWh for 300 and 600 miles of 

driving, respectively. The weights of battery packs are 17,000 and 25,000 kg (37,000-55,000 lbs) 

for 600- and 900-mile driving ranges, respectively. Large battery weights challenge the payload 

capacity of electric trucks. However, research on battery capacity is addressing this challenge. The 
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transition of Li-ion battery density from 350 wh/kg to 260 wh/kg reduces battery pack weight by 

one-third. Adopting a more advanced battery option (beyond Li-ion) will significantly reduce the 

battery pack weight. Researchers are also working on more advanced batteries with increased 

density and decreased cost (Sripad and Viswanathan, 2017). A few companies, including Tesla, 

BYD, and Toyota, are trying to improve the batteries of EVs. Additionally, deploying new 

technologies, such as dynamic wireless power transfer may gradually reduce EVs' demand for their 

large batteries. Caltrans has already done feasibility analyses of such deployments for certain 

major transit corridors (Esfahani and Song, 2019). 

Hydrogen fuel cell technology is another emerging technology that represents an additional 

AFV option. Nikola Motor is aiming to bring this technology to market via their Class-8 trucks. 

Nikola Motor Company plans to create a network of 700 fuel stations across the U.S. and Canada 

by 2028 to provide enough fueling options for users. They have received more than 13,000 orders 

in advance for this type of truck (O’Dell, 2019). The challenging part of hydrogen fuel cell 

technology is the hydrogen gas itself. It ignites more quickly than any other fuel at both high and 

low concentrations of the gas. The storage of hydrogen in liquid form demands extra preparation 

due to its features. It has a very low boiling temperature (20 degrees Kelvin), which is why it boils 

off very quickly when spilled. In contrast, overly cold fuel can embrittle and break metal 

equipment and cause cold burn injuries to people. Hydrogen-powered vehicles can also cause an 

electric shock due to the chemical reaction of hydrogen and oxygen with the surrounding air while 

powering the vehicles (The International Consortium for Fire Safety, Health & the Environment). 

Nikola is preparing to handle all types of safety issues for hydrogen cells according to national and 
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international guidelines (Park, 2019). They plan to build a hydrogen gas plant at the refueling 

stations, so that transporting gas to the refueling station will not be necessary (Park, 2019). The 

future of AFV options appears to be very promising as manufacturers have already announced 

upcoming products. These products appear to address all of the challenges identified to date. Thus, 

there will be better opportunities for adopting AFVs in the future. 

Chapter Summary 

In this chapter, the previous studies on the replacement models described in the literature 

have been reviewed. In the literature, deterministic and stochastic linear and nonlinear models have 

been used widely. LCCA is also a very popular approach in fleet replacement modeling. In 

addition, real-life practices by different DOTs, future technologies, and challenges regarding 

AFVs were discussed. DOTs mainly develop their own tools and software to analyze their present 

vehicle data and to decide which vehicles are more prioritized to get replaced. 
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DATA COLLECTION 

Overview 

This chapter introduces the data used to accommodate the deployment cost of AFVs and 

other required parameters. Briefly, the data was acquired from the UDOT Fleet Tracking Website 

(verizonconnect.com) from October 2018 to September 2019. 

Data from UDOT’s Fleet Tracking Website 

Detailed data regarding all used and unused vehicles can be found on the UDOT Fleet 

Tracking Website (verizonconnect.com). Heavy-duty truck and pickup truck data have 578 and 51 

data points (rows), respectively. A data point represents a particular truck, showing its model, 

production year, registration number, monthly mileage (from October 2018 to September 2019), 

and the average active days per month (between October 2018-September 2019). 

3.2.1 Heavy-Duty Trucks in UDOT’s Fleet 

The UDOT fleet system has 578 heavy-duty trucks (Class 7 & 8 trucks; based on 

classification of commercial trucks by the Federal Highway Administration) with their full profile 

information. Profile information includes the vehicle’s model information, exterior description, 

date of inclusion in the fleet, utilization data (mileage driven), idle time, fuel information, current 

location, type of use (heavy/medium duty), and device condition. Among 578 trucks, 551 trucks 

are identified as utilized vehicles, referring to vehicles driven for more than or equal to one mile 

during the data collection period (October 2018 to September 2019). Among the 27 unused trucks, 
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15 trucks were new additions to the fleet. The remaining unused trucks (12 trucks) have not been 

used, possibly due to maintenance or technical issues. Among all trucks, 55% are less than ten 

years old, and the rest are between 11 and 24 years old. Figure 3.1 shows the frequency plot of the 

vehicles’ age. 

Trucks are categorized based on their mileage via the following two approaches: 

I. Average mile per active day (AMAD) 

II. Month-wise mile per active day (MMAD) 

In the first approach, the total annual mileage of each truck is divided by the total active 

days within a year to calculate AMAD. 

Ʃ Vehicle Mileage Traveled in a year 
AMAD = 

Ʃ Active days within a year 

Active days refer to the days when the vehicle was driven. The AMAD can be used to 

categorize vehicles into different groups. In this project, seven groups are considered as follows: 

1) [1-51), 2) [51-101), 3) [101-150), and 4) [151- 201) miles/active day. Figure 3.2 represents the 

number and the percentage of heavy-duty trucks based on their AMADs. 
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Figure 3.1 Histogram of trucks in UDOT’s fleet 
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Figure 3.2 Representation of trucks in UDOT’s fleet based on AMAD 
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Following the categorization of all the trucks, the summation of total annual mileage was 

calculated for each category. Then the summation was divided by the number of trucks assigned 

to that category to find the average annual mileage traveled by each truck associating with that 

category. Table 3.1 represents the average annual mileage per vehicle for each category. 

Average annual mileage per vehicle 

Mileage Traveled in a year by all the vehicles of a range category 
= 

Number of vehicles within a range category 

Based on the AMAD approach, the highest number of trucks is in the first category, [1-

50). The average annual mileage of this category is 3,244 miles/year. 

Table 3.1 Average annual mileage per vehicle for heavy-duty trucks categorized based on 

AMAD 

Average Mileage Range 
Number of Trucks 

Average annual 

(miles/active day) mileage (miles/year) 

[1-50) 289 3,244 

[51-100) 221 7,758 

[101-150) 39 12,936 

[151-200) 2 17,428 

For the second approach, monthly mileage was divided by the active days within a month 

to yield the MMAD, as follows: 

Ʃ Vehicle Mileage Traveled in a month 
MMAD = 

Ʃ Active days within a month 
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MMAD is calculated for each vehicle per month, from October 2018 to September 2019. 

Vehicles are assigned to appropriate categories based on their highest MMAD. For example, when 

a truck had 130 and 30 miles per active day in November and in December, respectively, the truck 

will be assigned to the third category, [101-150). Figure 3.3 represents the number and percentage 

of categorized heavy-duty trucks based on their highest month-wise mile/active day. Table 3.2 

includes the average annual mileage per vehicle for each category when the trucks are categorized 

based on the highest MMAD. The MMAD approach shows that the largest number of trucks is in 

the second category, [101-150), which is different than the AAMD approach. The average annual 

mileage of this category is 5,057 miles/year. 

The fleet agencies could decide to apply any vehicle classification approach based on the 

utilization rate of the vehicles. Suppose the vehicles are utilized at a similar rate throughout the 

year. In that case, both AMAD and MMAD classification approaches will categorize the vehicles 

similarly. On the other hand, the MMAD may categorize the vehicles more representatively if 

seasonal variations exist in vehicles’ utilizations. For example, snowplows are only used during 

the winter season. The MMAD classification approach is more suitable for the classification of 

snowplows in the fleet. 
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38, 7% 
26, 5% 
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Figure 3.3 Representation of trucks in UDOT’s fleet based on highest MMAD 

Table 3.2 Average annual mileage per vehicle for heavy-duty trucks categorized based on 

highest MMAD 

Mileage Range (miles/active 
Number of Trucks 

Average Annual Mileage 

day) (miles/year) 

[1-50) 48 570 

[51-100) 88 2,490 

[101-150) 159 5,057 

[151-200) 117 7,242 

[201-250) 75 8,412 

[251-300) 38 9,219 

[301-∞) 26 10,673 
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3.2.2 Light and Medium-Duty Pickups in UDOT’s Fleet 

In the UDOT fleet system, 51 light- and medium-duty trucks were identified with their 

complete profile information. The data were collected based on vehicle activity between October 

2018 and September 2019. Forty-five pickups were driven for at least one mile during the data 

collection period (October 2018 to September 2019). The remaining six pickups were not operated 

during this period. Approximately 90% of total pickups are within an age range of ten years. The 

remaining trucks are between 11 and 13 years old. Figure 3.4 shows a frequency plot of the 

pickups’ age. 

Figure 3.4 Histogram of pickups in UDOT’s fleet 

Light- and medium-duty pickups were categorized based on the same two approaches used 

for trucks. In the first approach, pickups were categorized based on AMAD. The majority of 

pickups were found to be in the second and fourth categories, [51-100) and [151-200), respectively. 

Figure 3.5 represents the number and percentage of pickups based on their AMAD. Table 3.3 

shows the average annual mileage for each range category. The average annual mileage for the 

second and fourth categories are 803 and 1,874 miles/year, respectively. Average annual mileage 

data show that pickups are not utilized all that much per year. 
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Figure 3.5 Representation of pickups based on AMAD 

Table 3.3 Average annual mileage per vehicle for pickups categorized based on AMAD 

Mileage Range 

(miles/active day) 
Number of Pickups 

Average Annual Mileage 

(miles/year) 

[1-50) 

[51-100) 

[101-150) 

[151-200) 

[201-250) 

[251-300) 

[301-∞) 

7 

14 

8 

14 

1 

-

1 

385 

803 

1,181 

1,874 

2,545 

-

3,227 

Figure 3.6 and Table 3.4 represent the number of light- and medium-duty pickups, the 

percentage of pickups in each category, and the annual mileage per pickup vehicle when they are 

categorized based on their highest MMAD. The fifth category [201-250) contains the largest 
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number of pickups, different from the AMAD approach. The average annual mileage for this 

category is 1,341 miles/year. 

[1, 2%][1, 2%] 

[7, 16%] 

[8, 18%] 

[14, 31%] 

[1-50) 

[8, 18%] 
[51-100) 

[101-150) 

[151-200) 

[201-250) 

[251-300) 

[6, 13%] [301- ∞) Mile/Active Day 

[Number of Vehicles, Percentage of the Vehicles in the 

Fleet] 

Figure 3.6 Representation of pickups in UDOT’s fleet based on highest MMAD 

Table 3.4 Average annual mileage per vehicle for pickups categorized based on highest 

MMAD 

Mileage Range 

(miles/active day) 
Number of Pickups 

Average Annual 

(miles/year) 

Mileage 

[1-50) 1 25 

[51-100) 7 578 

[101-150) 8 689 

[151-200) 6 930 

[201-250) 14 1,341 

[251-300) 8 2,174 

[300-∞) 1 3,227 
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Description of Supplemental Data 

To decide on an action to be taken regarding a possible option (e.g., to be bought, sold, or 

kept), the options and their related costs should be known. This subsection is dedicated to 

recognizing the options and their costs. 

3.3.1 AFV Options 

A few AFV options were discussed in Section 2.2.4. In addition to EVs, a few other AFV 

options, such as diesel hybrid electric vehicle (HEV), diesel-hydraulic hybrid (HHV), biodiesel 

(B-20), ethanol (E85), compressed natural gas (CNG), liquefied natural gas (LNG), propane/ 

liquefied petroleum gas (LPG), and LNG/diesel pilot ignition are considered in this project. 

In 2019, the use of natural gas for new heavy-duty trucks increased compared to the 

previous years (HDT stuff of Truckinginfo, 2019). The U.S. Department of Energy (DOE) 

provides funding for the adoption of AFVs. DOE has awarded approximately $460 million for 

projects related to AFV technologies (U.S. Department of Energy). Biodiesel is one of the most 

popular AFV fuel options. Biodiesel is developed from renewable energy sources like vegetable 

oils and animal fats as a replacement for diesel. Biodiesel is generally blended with diesel. For 

example, B-20 is composed of 20% biodiesel and 80% diesel and B-20 meets the Federal Energy 

Policy Act (EPAct) requirements to be used as AFV fuel (Commonwealth of Massachusetts). LNG 

and CNG are suited to heavy-duty trucks, since trucks using these fuels would have horsepower 

and torque characteristics similar to diesel trucks (Jackson, 2013). 
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A few companies have already announced plans for their future production of electric and 

hybrid vehicles. eCascadia & eM2 from Daimler, Semi from Tesla, and 8TT from BYD, are the 

options for electric trucks (Lambert, 2019; O’Dell, 2017; Freightliner, 2020). Ford, Bollinger, 

Rivian, and a few other companies have announced plans for hybrid-electric pickups (Brzozowski, 

2019). 

Conventional fuel vehicles have also been considered for adoption. Generally, gasoline and 

propane trucks are not used in fleets due to their characteristics. These two fuels are popular 

options for light- and medium-duty vehicles (Jackson, 2013). The Alternative Fuel Life-

Cycle Environmental and Economic Transportation (AFLEET) Model 2018, developed by 

Argonne National Lab (ANL), did not include gasoline and propane as viable options for heavy-

duty trucks (Argonne National Library, 2018). Thus, gasoline and propane heavy-duty trucks were 

excluded from the model as possible options. In contrast, gasoline and propane pickups were 

considered in this model. 

3.3.2 Battery Price and Charging Stations for EV 

Battery price is an essential factor in selecting an electric truck/pickup as a replacement 

since the purchasing price of electric trucks/pickups depends heavily on it. In the past few years, 

the battery pack price has been decreasing at a steep rate. Figure 3.7, published by Bloomberg 

NEF, shows the rapid reduction of the battery pack price over the last nine years (Scot, 2019). In 

2019, the battery pack price went down to $156/kWh. From 2018 to 2019, the price decreased by 

13%. 
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Figure 3.7 Reduction and forecast of battery pack price (Scot, 2019) 

Studies on predicting future battery prices have been conducted, resulting in various 

forecasts. Figure 3.8 shows the trends and predictions based on different sources and publications 

(Nykvist and Nilson, 2015). In this project, the prediction made by BloombergNEF is used, in 

which the battery price will be reduced to $100/kWh by 2024 and below $62/kWh by 2030 (Figure 

3.7) (Scot, 2019). 

There are three types of charging systems available for EVs: Level 1, Level 2, and Level 

3. A Level 1 charging facility requires a 120V outlet, allowing vehicles to be charged for 100 miles 

within 17-25 hours. A Level 2 charging facility requires a 240V outlet, enabling vehicles to be 

charged for 100 miles within 4-5 hours. A Level 3 charger is a fast charger that costs substantially 

more than Level 1 and Level 2 chargers. In this project, only Level 2 chargers are considered for 
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installation if the benefits of electric trucks/pickups outweigh their costs. The cost of installing a 

Level 2 charger is assumed to be $1,200 in this project (Levinson and West, 2018). 

Figure 3.8 Trend and forecast of battery pack price according to publications (Levinson 

and West, 2018) 

3.3.3 Purchase Price of AFVs 

The purchasing price of each type of AFV, except EVs, was collected from the data used 

in the AFLEET Model 2018 (Argonne National Library, 2018). The AFLEET Model calculates 

total ownership cost and the emissions of GHG for different AFVs. Table 3.5 and Table 3.6 include 

the purchasing prices of alternative fuel trucks and pickups, respectively. The Department of 

Energy (DOE), ANL, and other research organizations (Open EI, 2019) researched future changes 
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in purchasing prices. It was found that there will not be a significant change in the purchasing 

prices of AFVs, except for EVs. 

The price of an EV is divided into two parts: a fixed proportion and a variable proportion 

(Lajevardi et al., 2019). The variable proportion depends on the price of the battery pack, which 

varies based on the battery pack's capacity. This project assumed that vehicles have battery packs 

that are dependent on the traveled miles/day. Furthermore, we assumed that any electric vehicle 

would be operated following the hub-and-spoke operation system. In a hub-and-spoke operation 

system, trucks leave the hub (storage station of trucks) after refueling each day and return to the 

same hub at night for refueling. In this arrangement, electric trucks can charge only once a day. 

Thus, the battery pack's capacity should satisfy the demand of the vehicle for the entire day. 

Table 3.5 Purchasing price of heavy-duty trucks 

Truck Fuel 
Diesel EV HEV B-20 CNG LNG LNG /Diesel Pilot Ignition 

Type 

Purchasing 

Price ($1000/ $100 $120* $140 $100 $165 $150 $190 

Vehicle) 

* This value does not include the battery pack price, which can be calculated as: Battery Price ($/kWh)* Battery Pack 

Capacity (kWh) 

Table 3.6 Purchase Price of Light- and Medium-Duty Pickups 

Pickup Fuel 
Diesel Gasoline EV B-20 E85 CNG LPG 

Type 

Purchasing 

Price $46.5 $36 $30* $46.5 $36 $44 $44 

($1000/Vehicle) 

* This value does not include the battery pack price, which can be calculated as: Battery Price ($/kWh)* Battery Pack 

Capacity (kWh) 
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3.3.4 Fuel Price 

The fuel price data set was collected from the “Alternative Fuels Data Center” hosted by 

the DOE, which provides national average fuel prices between October 1 and October 31, 2019 

(Alternative Fuel Data Center, 2019). Fuel prices fluctuate based on several factors, including 

seasonal changes and the worldwide economy. The annual growth rate of fuel price was collected 

from Annual Energy Outlook 2019 (U.S. Energy Information Administration, 2019). It was 

assumed that fuel prices would change at an exponential rate. 

Table 3.7 Fuel Price 

Fuel type Fuel price ($/unit) 
Annual changes in fuel 

price rate (%) 

Gasoline 2.68/GGE 0.7 

Diesel 3.08/gallon 0.7 

Electricity 0.13/kWh 0.3 

Biodiesel (B-20) 2.87/gallon 0.7 

Ethanol (E85) 2.28/gallon 0.5 

Liquefied Natural Gas (LNG) 2.69/gallon -0.3 

Compressed Natural Gas (CNG) 2.20/GGE -0.3 

Propane (LPG) 2.76/gallon -0.3 

3.3.5 Operating Cost 

The operating cost of a vehicle is calculated based on per mile maintenance and energy 

costs, fuel type, annual per vehicle mileage, fuel economy, and age of the vehicle. Table 3.8 and 

Table 3.9 tabulate the data used for our case project, which were collected from AFLEET Model 

2018 (Argonne National Library, 2018). Based on the literature, maintenance costs increase with 

increases in vehicle age (Gransberg, 2016; Powell, 2014). Maintenance costs change with the age 
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of a vehicle with different trends. Maintenance costs are considered to increase exponentially at a 

rate of 12.7% with each one-year increase in the vehicle’s age. The rate of increase was found 

from the UDOT research report for class 8 type vehicles (snowplow trucks) (Utah Department of 

Transportation, 2015). The fuel economy does not significantly change with age (Feng and 

Figliozzi, 2012). Hence, it was assumed to be constant throughout the vehicle life-cycle in this 

model. 

Table 3.8 Maintenance Costs and Fuel Economy Data for Heavy-Duty Trucks 

Truck Fuel LNG/Diesel 
Diesel EV HEV B-20 CNG LNG 

Type Pilot Ignition 

Maintenance 
0.2 0.14 0.16 0.2 0.22 0.22 0.22 

Cost ($/mile) 

Fuel Economy 
7.3 2* 7.8 7.9 7.6 11.4 11.9 

(mile/gallon) 
*Fuel economy of EV is in kWh/mile unit 

Table 3.9 Maintenance Costs and Fuel Economy Data for Light- and Medium-Duty 

Pickups 

Pickup Fuel 
Diesel EV Gasoline B-20 E85 CNG LPG 

Type 

Maintenance 
0.29 0.17 0.18 0.29 0.18 0.18 0.18 

cost ($/mile) 

Fuel economy 
18 0.45 13 16.6 9.5 12.4 9.9 

(mile/gallon) 

*Fuel economy of EV is in kWh/mile unit 

3.3.6 Infrastructure Cost 

Infrastructure cost is associated with the development of new infrastructure used to 

facilitate the fueling of AFVs if demand for them increases. To select an appropriate AFV, 

adequate refueling stations should also be deployed by proper authorities (here, the UDOT). Thus, 
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the adoption of any AFV is dependent on the infrastructure cost. However, this cost is considerably 

complex to be incorporated into the decision-making process. Cost variations are dependent on 

many factors, such as fuel type, location of the station, storage capacity, labor cost, transfer cost 

of fuel, and land costs. For small CNG stations, the cost has been roughly estimated to be between 

$400,000- $600,000 (U.S. Department of Energy, 2014). The cost of a CNG refueling station can 

range up to $1.8 million (U.S. Department of Energy, 2014). LNG fueling station costs can vary 

widely, with an average of $2.5 million (Alternative Fuel Data Center, 2019). According to the 

DOE, the cost of equipping an E85 refueling station is between $50,000 to $70,000 if the station 

installs a new underground tank. The cost is $5000 to $30,000 if the station converts an existing 

tank (Seki et al., 2018). 

Considering these infrastructure costs, introducing AFVs is an expensive decision when 

there is a need to construct fuel stations. The upfront cost will be very high, which will impose 

more challenges for the introduction of AFVs. In this report, we assumed that CNG, LNG, E85, 

and other types of fueling facilities are available for refueling UDOT’s fleet vehicles, except for 

EVs. Hence, the cost of Level-2 charging facilities for EVs has been included in the model. 

3.3.7 Salvage Price 

The salvage price depends on vehicle type, brand, usage level, current condition, and age 

(Hagman et al., 2016). The depreciation rate remains high during the first five years of any vehicle, 

and then it declines. As the depreciation rate depends on many factors, researchers avoid the 

complexity of the salvage function by using a fixed salvage price for all vehicles (Feng and 
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Figliozzi, 2012 and 2014). In this project, the following formula was adopted, which is a modified 

version of Ahani et al. (2016) and Figliozzi et al. (2011), 

=𝑠𝑗𝑘𝑐 𝑣(𝑗−𝑖)𝑘𝑐 (1 − 𝜃)𝑖 

where 𝑠𝑗𝑘𝑐 is the salvage price of a vehicle of type 𝑘 in category 𝑐 in the year 𝑗, 𝑣(𝑗−𝑖)𝑘𝑐 is the 

purchasing price of that particular vehicle in the year (𝑗 − 𝑖), and 𝜽 is the depreciation rate with 

age 𝑖. In this model, 𝜃 is assumed to be 10%. 

Chapter Summary 

This chapter introduced the data used to accommodate the deployment cost of AFVs and 

other required parameters. Briefly, the data was acquired from the UDOT Fleet Tracking Website 

(verizonconnect.com) from October 2018 to September 2019. Brief descriptions of the parameters 

used to calculate life-cycle costs were also provided. 
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Replacement Model 

Overview 

This chapter introduces the FRM formulation and the rolling horizon approach. The model 

optimizes the total cost of the vehicles in a fleet for a planning horizon used to replace old vehicles 

and purchase new vehicles. When the operating costs of old vehicles outweigh the purchasing and 

operating costs of new vehicles, the old ones are replaced. Finally, the scenarios used for sensitivity 

analysis are discussed in this section. 

Model Formulation 

As mentioned in the previous section, six types of costs are considered in this FRM: 

purchasing cost (PC), maintenance cost (MC), energy cost (EC), emission cost (EMC), 

infrastructure cost (IC), and salvage cost (SC) (negative cost). The objective of this project is to 

minimize the total cost of fleets over the planning horizon. Several decision variables are critical, 

such as the number of vehicles to be bought or sold in a given year. 

The FRM also includes two types of parameters: (1) economic factors (e.g., planned time 

horizon, the demand of vehicles, annual miles to be traveled, future fuel costs, and discount rate), 

and (2) vehicle factors (e.g., types of vehicles, vehicle life, purchasing cost, and salvage price). 

The optimization model is a deterministic homogeneous replacement model, which minimizes 

total cost. Before introducing the model, which is an extension of a model proposed by Feng and 

Figliozzi (2012 and 2014), notations and terms are introduced, as follows: 
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Sets 

𝑲 Set of all vehicle types 

A Set of vehicle age in a year 

T Set of planning horizons 

C Set of mileage range-based categories 

Indices 

𝑘 Vehicle type 

𝑖 Age of any vehicle (year) 

𝑗 Time (year) 

𝑐 Mileage range-based category 

Decision Variables 

𝑋𝑖𝑗𝑘𝑐 The number of i-year old, type k vehicles of mileage range c in use from the end of 

year j to the end of year j+1 

𝑃𝑗𝑘𝑐 The number of i-year old, type k vehicles of mileage range c purchased at the end 

of year j 

𝑌𝑖𝑗𝑘𝑐 The number of i-year old, type k vehicles of mileage range c salvaged at the end of 

year j 

𝐶𝐶𝑗 The number of chargers in operation in year j 

𝑄𝐶𝑗 The number of new chargers needed to be installed in year j 

Parameters 

𝐴 Maximum age of vehicles 

𝐴𝑉𝐴𝐼𝐿𝑗𝑘𝑐 A binary number that indicates if, in any year 𝑗, type k vehicle of range c is available 

for purchase 

ℎ𝑖𝑘𝑐 Number of i-year old, type k vehicles of mileage range c available at time zero 

(beginning year) 

𝑢𝑘𝑗𝑐 Annual miles traveled by type k vehicle with mileage range c in year j 

𝑏𝑗 Budget for purchasing new vehicles in year j 

𝑣𝑘𝑗𝑐 Purchase cost of type k vehicle with mileage range c in year j 

𝑓𝑗𝑘 Fuel cost per year for vehicle type k of in year j 

𝑚𝑘𝑐 Maintenance cost per year for type k vehicle with mileage range c 

𝑠𝑗𝑘𝑐 Salvage cost of type k vehicle in year j 

𝑑𝑟 Discount rate 

𝑐𝑝 Charger price 

𝑖𝑐 The number of chargers in year zero 

𝑝𝑗 Vehicle purchasing price change rate in year j 
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𝑒𝑗 Fuel price change rate in year j 

𝑒𝑐 Emission cost per ton GHG 

𝑒𝑚𝑖𝑘 Emission of GHG in tons per mile for an i-year old and type k vehicle 

𝑏𝑖 Maintenance cost increase rate with age i years 

The replacement model can be expressed as follows: 

FRM: 

𝑇−1 𝐾 

min 𝑍 = ∑ ∑ 𝑣𝑘𝑗𝑐 𝑃𝑖𝑗𝑘𝑐 . 𝐴𝑉𝐴𝐼𝐿𝑗𝑘𝑐 . (1 ± 𝑝𝑗 )𝑗(1 + 𝑑𝑟)−𝑗 

𝑗=0 𝑘=1 

𝑇−1 𝐾 𝐴−1 

+ ∑ ∑ ∑ 𝑓𝑗𝑘 𝑢𝑘𝑗𝑐 𝑋𝑖𝑗𝑘𝑐 (1 ± 𝑒𝑗 )𝑗(1 + 𝑑𝑟)−𝑗 

𝑗=0 𝑘=1 𝑖=0 

𝑇−1 𝐾 𝐴−1 𝑇−1 

+ .∑ ∑ ∑ 𝑚𝑘𝑐 𝑋𝑖𝑗𝑘𝑐 (1 + 𝑏𝑖 )𝑖(1 + 𝑑𝑟)−𝑗 + ∑ 𝑐𝑝 . 𝑄𝐶𝑗 (1) 

𝑗=0 𝑘=1 𝑖=0 𝑗=1 

𝑇−1 𝐾 𝐴−1 

+ ∑ ∑ ∑ 𝑢𝑘𝑗𝑐 . 𝑋𝑖𝑗𝑘𝑐 . 𝑒𝑐 . 𝑒𝑚𝑖𝑘 . (1 + 𝑑𝑟)−𝑗 

𝑗=0 𝑘=1 𝑖=0 

𝑇 𝐾 𝐴 

.− ∑ ∑ ∑ 𝑠𝑗𝑘𝑐 𝑌𝑖𝑗𝑘𝑐 (1 + 𝑑𝑟)−𝑗 

𝑗=0 𝑘=1 𝑖=0 

s.t. 

𝐾 𝐶 

∑ ∑ 𝑣𝑘𝑗𝑐 . 𝑃𝑖𝑗𝑘𝑐 ≤ 𝑏𝑗 , ∀𝑗 ∈ {0, 1, 2, 3, … . . 𝑇 − 1} (2) 

𝑘=1 𝑐=1 

𝐾 𝐴−1 

=∑ ∑ 𝑋𝑖𝑗𝑘𝑐 ℎ𝑖𝑘𝑐 , ∀𝑗 ∈ {0, 1, 2, 3, … . . 𝑇 − 1} (3) 

𝑘=1 𝑖=0 

𝑃𝑗𝑘𝑐 . 𝐴𝑉𝐴𝐼𝐿𝑗𝑘𝑐 = 𝑋0𝑗𝑘𝑐 , ∀𝑗 ∈ {1, 2, 3, … . . 𝑇 − 1} , ∀𝑘 ∈ 𝐾 , ∀𝑐 ∈ 𝐶 (4) 

𝑃0𝑘𝑐 𝐴𝑉𝐴𝐼𝐿𝑗𝑘𝑐 + ℎ0𝑘𝑐 = 𝑋00𝑘𝑐 , ∀𝑘 ∈ 𝐾 ∀𝑗 ∈ {0, 1, 2, 3, … . . 𝑇 − 1} (5) 
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𝑋𝑖0𝑘𝑐 + 𝑌𝑖0𝑘𝑐 = ℎ𝑖𝑘𝑐 , ∀𝑖 ∈ {1, 2, 3, … . . 𝐴} , ∀𝑘 ∈ 𝐾 ∀𝑐 ∈ 𝐶 (6) 

𝑋𝑖𝑗𝑘𝑐 + 𝑌𝑖𝑗𝑘𝑐 = 𝑋(𝑖−1)(𝑗−1)𝑘𝑐 , ∀𝑖 ∈ {1, 2, … . . 𝐴}, ∀𝑗 ∈ {1, 2. . 𝑇}, ∀𝑘 ∈ 𝐾 ∀𝑐 ∈ 𝐶 (7) 

𝑋𝑖𝑇𝑘𝑐 = 0 , ∀𝑖 ∈ {0, 1, 2, 3, … . 𝐴 − 1} , ∀𝑘 ∈ 𝐾 ∀𝑐 ∈ 𝐶 (8) 

𝑌0𝑗𝑘𝑐 = 0 , ∀𝑗 ∈ {0, 1, 2, 3, … . 𝑇} , ∀𝑘 ∈ 𝐾 ∀𝑐 ∈ 𝐶 (9) 

𝑌𝑖0𝑘𝑐 = 0 , ∀𝑖 ∈ {0, 1, 2, 3, … . 𝑇} , ∀𝑘 ∈ 𝐾 ∀𝑐 ∈ 𝐶 (10) 

𝐴 𝐶 

∑ ∑ 𝑋𝑖𝑗𝐸𝑉𝑐 = 𝐶𝐶𝑗 , ∀𝑗 ∈ {0, 1, 2, 3, … . . 𝑇 − 1} (11) 

𝑖=0 𝑐=1 

𝐶𝐶𝑗−1 + 𝑄𝐶𝑗 = 𝐶𝐶𝑗 , ∀𝑗 ∈ {1, 2, 3, … . . 𝑇} (12) 

𝑋𝑖𝑗𝑘𝑐 , 𝑃𝑗𝑘𝑐 , 𝑌𝑖𝑗𝑘𝑐 ∈ {0, 1, 2, 3, … . } (13) 

In the above formulation, equation (1), the objective function, minimizes the sum of 

purchasing cost, energy cost, maintenance cost, and salvage cost for the planning horizon. The 

first term of the objective function is the purchasing cost (PC), where 𝑣𝑘𝑗𝑐 is the purchasing cost 

of a type k vehicle with mileage range c in year j. 𝑃𝑖𝑗𝑘𝑐 is the number of i-year old, type k vehicles 

of mileage range c purchased at the end of year j. 𝐴𝑉𝐴𝐼𝐿𝑗𝑘𝑐 is a binary number that indicates 

whether type k vehicles of mileage range c are available for purchase in year-j. Each year the cost 

of newly purchased vehicles will be totaled by the following equation: 

𝑇−1 𝐾 

)𝑗 𝑃𝐶 = ∑ ∑ 𝑣𝑘𝑗𝑐 . 𝑃𝑖𝑗𝑘𝑐 . 𝐴𝑉𝐴𝐼𝐿𝑗𝑘𝑐 . (1 ± 𝑝𝑗 . (1 + 𝑑𝑟)−𝑗 

𝑗=0 𝑘=1 

where 𝑝𝑗 and dr are the rate of purchasing price increase with time and the discount rate, 

respectively. Note that PC is the net present value of the sum of all purchasing costs during the 

planning horizon. 
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The second term of the objective function is the energy cost (EC) calculated from annual 

usage, ujkc , and fuel cost, fjk, for a type k vehicle in year j. 𝑋𝑖𝑗𝑘𝑐 is the number of i-year old, type 

k vehicles of mileage range c that are in use from the end of year j to the end of year j+1. The 

change in fuel price in year j is captured by parameter ej. EC sums the energy costs for all the used 

vehicles in the fleet and presents the cost as the net present value. 

𝑇−1 𝐾 𝐴−1 

)𝑗 𝐸𝐶 = ∑ ∑ ∑ 𝑓𝑗𝑘 .𝑢𝑘𝑗𝑐 . 𝑋𝑖𝑗𝑘𝑐 . (1 ± 𝑒𝑗 . (1 + 𝑑𝑟)−𝑗 

𝑗=0 𝑘=1 𝑖=0 

The third term is the maintenance cost (MC), which is calculated using mkc to yield 

maintenance cost per year for type k vehicles with mileage range c. It also considers the change of 

maintenance cost with age i using parameter bi. 

𝑇−1 𝐾 𝐴−1 

)𝑖 𝑀𝐶 = ∑ ∑ ∑ 𝑚𝑘𝑐 . 𝑋𝑖𝑗𝑘𝑐 .(1 + 𝑏𝑖 . (1 + 𝑑𝑟)−𝑗 

𝑗=0 𝑘=1 𝑖=0 

The fourth term in the objective function is infrastructure cost (IC). The IC includes only 

the cost of chargers for EVs. Here, cp is the price of a charger, and QCj is the number of new 

chargers that need to be installed in year j. 

𝑇−1 

𝐼𝐶 = ∑ 𝑐𝑝 . 𝑄𝐶𝑗 

𝑗=1 
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The emission cost (EMC) is the monetary value of emissions. EMC is calculated using 

utilization (ukjc) of type k vehicles of mileage range c in year j. ec is the emission cost per ton of 

GHG, and emik denotes GHG emission in tons per mile for i-year old and type k vehicles. 

𝑇−1 𝐾 𝐴−1 

𝐸𝑀𝐶 = ∑ ∑ ∑ 𝑢𝑘𝑗𝑐 . 𝑋𝑖𝑗𝑘𝑐 . 𝑒𝑐 . 𝑒𝑚𝑖𝑘 . (1 + 𝑑𝑟)−𝑗 

𝑗=0 𝑘=1 𝑖=0 

The last term is salvage cost (SC), calculated by multiplying the salvage price sjkc of type k 

vehicles in year j with mileage range c and Yijkc. Here, Yijkc is the number of i-year old, type k 

vehicles of mileage range c salvaged at the end of year j. 

𝑇 𝐾 𝐴 

𝑆𝐶 = ∑ ∑ ∑ 𝑠𝑗𝑘𝑐 . 𝑌𝑖𝑗𝑘𝑐 . (1 + 𝑑𝑟)−𝑗 

𝑗=0 𝑘=1 𝑖=0 

All costs are converted into net present value. 

Equation (2) guarantees that the total purchasing cost in a year should not exceed the budget 

of that year. Equation (3) states that at any year 𝑗, the number of type k vehicles with range 𝑐 

should be the same as the number of total vehicles of mileage range c at time zero. For the FRM, 

it is assumed that only new vehicles will be purchased for the fleet. Equation (4) relates the 

purchased vehicles to the new vehicles. AVAILjkc ensures that the purchased vehicle is available in 

the market. Equation (5) guarantees that the number of new vehicles utilized during year 0 must 

equal the sum of the existing new vehicles plus purchased vehicles. Equation (6) imposes the 

conservation of vehicles (i.e., the initial vehicles (not of age 0) should be either used or sold). 
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Equation (7) ensures that the age of any vehicle in use will increase by one year after each year. 

Equation (8) ensures that all vehicles will be sold at the end of the planning horizon. In actual 

practice, all the vehicles will not be salvaged at the end of the planning horizon; instead, they will 

continue to be operated. However, this assumption is made here to provide a fair estimation of the 

costs for the entire planning horizon and to facilitate comparisons of different scenarios. Equation 

(9) ensures that a newly purchased vehicle should not be sold before use. Equation (10) states that 

no vehicle can be sold before the first year of the planning horizon. Equation (10) states that the 

total number of chargers in operation in any year should be equal to the total number of EVs 

present in the UDOT fleet. The ratio of EVs to chargers is assumed to be 1:1 for the FRM, as the 

charging time of the vehicles has not been considered. Hence, one charger for each vehicle will 

allow each vehicle to be fully charged through the night. Equation (12) states that the number of 

chargers to be installed in a year plus the number of chargers already in operation from the previous 

year will be equal to the number of chargers in operation in the year. Finally, equation (13) states 

that the decision variables associated with purchasing, utilization, and salvaging decisions must be 

integer numbers. 

Baseline Scenario 

The baseline scenario is our first scenario, in which the values of the parameters determined 

at the beginning of the planning horizon are used to determine the best composition of the yearly 

fleet for the planning horizon. In other words, once the parameters are inputted into the model, the 

model outputs the replacement plan for the entire planning horizon. The baseline scenario uses a 

single-run optimization model. 
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The rates of fuel price increases over the planning horizon are extracted from Table 3.7. 

The discount rate is considered to be 6.5% per year, and the depreciation rate is assumed to be 

10% per year for all types of vehicles. Emission cost calculations were done using AFLEET Tool 

2018. 

Rolling Horizon Methodology 

Planning models are exposed to a great deal of uncertainty while determining parameter 

values, especially when the planning horizon is long. RH is a widely-used approach used to handle 

parameter uncertainties in the field of transportation (Sama et al., 2013; Gkiotsalitis, and Berkum, 

2020; Zhan et al., 2016), such as supply, demand, and scheduling sectors (Sama et al., 2013; 

Gkiotsalitis, and Berkum, 2020). This approach captures the variability of the parameters and data 

by frequently updating the parameters and data within the planning horizon. 

In this approach, a fixed period called Prediction Horizon (PH) is set, equal to or less than 

the planning horizon. At the beginning of each PH, the variables and data are updated; then, based 

on the updated values, the optimization model generates results that are implemented for smaller 

time intervals called Implementation Horizon (IH). For the next iteration, PH starts from the end 

of the previous IH. The process iteratively continues until it covers the entire PH. Figure 4.1 depicts 

the entire process. We refer to the entire process as the rolling horizon algorithm (RHA). 
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Figure 4.1 Rolling Horizon Framework 

The RHA can be summarized as follows: 

❖Step 0: Initializing the length of the planning horizon, PH, and IH. 

❖Step 1: For the determined planning horizon and IH, calculate the number of iterations, L. The 

number of iterations can be found by dividing the planning horizon by the length of IH. 

❖Step 2: Update variables and data at the beginning of PH, then run FRM. The results/decisions 

obtained by running FRM are implemented for IH. 

❖Step 3: Update the initial state of the next new PH, which is the same as the final state of the 

previous IH. 

❖Step 4: If the current iteration number is less than the total iteration number calculated in the 

second step, go to Step 2; otherwise, stop. 

In general, the RHA approach uses a multi-run optimization approach. For this project, the 

planning horizon and PH are assumed to be 30 years, and IH is assumed to be five years. 
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Scenarios for Sensitivity Analysis 

Fuel price is one of the most uncertain factors among all the model’s parameters. The US 

EIA publishes a forecast for fuel production and price every year. Based on the forecast report for 

the past few years, this forecast may not be very close to the actual price. Fuel prices change based 

on global and national politics, the economy, and social issues (e.g., holidays, riots, and social 

movements). For example, the ongoing COVID-19 pandemic reshaped the entire fuel market. 

Figures 4.2 and 4.3 represent a comparison between fuel price predictions made by US EIA in 

November 2019 and the actual scenario in July 2020 for gasoline and diesel, respectively (U.S. 

Energy Information Administration, 2019 and 2020). The predictions of gasoline, oil, and diesel 

prices for 2020 made in 2019 (Figure 4.2(a) and Figure 4.3(a)) are not close to the actual fuel 

prices in 2020 (Figure 4.2(b) and Figure 4.3(b)) due to the COVID-19 pandemic. 
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(a)                                 (b) 

Figure 4.2 Oil price historical and predicted data for gasoline published by the US EIA in 

2019(a)  and 2020(b) 

Although situations like this may not happen frequently, differences between the predicted 

prices and actual prices always exist. Therefore, a few fuel price scenarios were considered in the 

sensitivity analyses to address the fuel price oscillation. Four scenarios were selected where the 

prices of gasoline, diesel, and biodiesel change by the rate of -10%, -5%, 5%, and 10% per year, 

while other parameters remain unchanged. RHA uses these price scenarios and provides 

replacement decisions. Note that the biodiesel (B-20) price is also assumed to change because 80% 

of its ingredients are petroleum diesel. The change rate, mentioned in Section 3.3.4, is applied to 

the base price of fuels. For other types of fuel, the prices are mentioned in Section 3.3.4. 
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(a)                                 (b) 

Figure 4.3 Oil price historical and predicted data for diesel published by the US EIA in 

2019(a)  and 2020(b) 

Chapter Summary 

This chapter included the formulation of FRM, which yields the feasibility decisions of 

introducing AFVs into the fleet by minimizing total cost considering purchasing cost, energy cost, 

maintenance cost, infrastructure cost, emission cost, and salvage cost. The rolling horizon (RH) 

approach was then discussed. The RH approach handles the fluctuating parameters and adjusts the 

model decisions. Finally, the scenarios for sensitivity analysis were discussed in this chapter. 
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Results 

Overview 

This chapter evaluates the FRM by investigating the outputs of the model for the previously 

mentioned scenarios. Cost comparisons are made between baseline fleet composition and RH 

scenarios. This chapter also compares the performance of FRM and that of other practical methods 

by comparing total costs. 

AMAD Categorization of Heavy-Duty Trucks 

In this subsection, the baseline is compared with scenarios 1, 2, 3, and 4 when trucks are 

categorized based on AMAD. Categorization based on AMAD is associated with a higher annual 

average mileage in each category than the MMAD approach. This categorization allows the FRM 

to present feasibility decisions for trucks that have high annual mileage. Fleet composition for the 

baseline scenario was found using the single-run optimization model, whereas fleet compositions 

for scenarios 1-4 were found by applying RHA to FRM. 

Table 5.1 presents the new truck compositions for the baseline scenario, scenario 1, 

scenario 2, scenario 3, and scenario 4. The results obtained by solving the model for the baseline 

scenario, scenarios 1, and scenario 2, show a similar type of truck composition that consists of 

diesel and B-20 fueled trucks. At the end of the planning horizon, all the trucks are converted from 

diesel to B-20. The reason behind this choice is the low purchasing price as compared to other 

options and the decrease in fuel price, which provides a low energy cost for B-20 and thus a better 
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cost-saving plan than other possible plans that proposed compositions consisting of options such 

as EV and LNG for the given fuel price forecasts presented in the baseline scenario and scenarios 

1-2. 

When fuel prices (gasoline, diesel, biodiesel) increase, the model selects LNG and EV 

along with B-20 (Table 5.1). The inclusion of LNG and EV is higher in scenario 4 than in scenario 

3 because the price of B-20 is higher in scenario 4. Hence, in scenario 4, B-20 is opted out by LNG 

and EV at the end of 30 years. It was also found that EV is not included in the high mileage range 

category (i.e., 151-200 mile/active day category). This is because, for long distances, EVs require 

high-capacity batteries, which results in high purchasing costs. In this case, the high purchasing 

price of EV does not outweigh its low operating cost. Hence, LNG is suggested by the model for 

the long-distance category. 

Figure 5.1 demonstrates that, at the beginning of the time horizon, the number of B-20 

trucks included in the fleet is greater than any other type of vehicle. Only LNG trucks are included 

after five years in scenario 4 (10% increase). EV is also introduced in the early years of scenarios 

3 and 4. At the end of the planning horizon, scenario 1 (10% decrease), scenario 2 (5% decrease), 

and the baseline scenario adopt only B-20 trucks, whereas scenario 3 (5% increase) and scenario 

4 (10% increase) include LNG and EV as well. Figure 5.2 presents a visual comparison of AFV 

and conventional vehicles within the fleet, which shows that, depending on the growth of the 

petroleum fuel price (scenarios 3 and 4), AFVs would replace conventional vehicles within 20 to 

25 years. 
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Figure 5.3 displays the advantages of the RH approach by comparing total costs between 

the baseline scenario and other scenarios for trucks. For a fair comparison, the total cost for the 

baseline scenario was calculated by obtaining the fleet composition from the baseline scenario (by 

solving the FRM) and obtaining the fuel prices from the corresponding scenarios. Given the fleet 

composition and fuel prices, FRM’s objective function was recalculated to provide the cost of 

implementing the baseline scenario in a situation where the actual fuel prices follow the 

corresponding scenarios. Cost-wise, Figure 5.3 shows that the RHA provides better results than 

the FRM by lowering the total cost. Figure 5.4 depicts the amount of cost savings realized by 

applying the RH algorithm. The highest amount of savings corresponds to scenario 4. 

Figure 5.1 New truck purchases for each 5 years over time 
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Figure 5.2 Fleet composition of trucks in different years for different scenarios 

Figure 5.3 Cost comparison between baseline and the RH approach for trucks 
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Figure 5.4 Total cost savings using the RH approach for trucks 
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Table 5.1 Results of all scenarios for heavy-duty trucks categorized based on AMAD 

Year 

Mileage Range Category 

[1-50) [51-100) [101-150) [151-200) 

Vehicles 

D
ie

se
l

B
-2

0

E
V

L
N

G

D
ie

se
l

B
-2

0

L
N

G

D
ie

se
l

B
-2

0

E
V

L
N

G

B
-2

0

E
V

L
N

G
 

Baseline Scenario 

15 

20 

25 

30 

5 

20 

25 

30 

5 

10 

25 

30 

5 

10 

15 

30 

5 

10 

15 

20 

227 

138 

80 

62 

151 

209 

289 

289 

289 

111 110 

83 138 

221 

221 

221 

221 

8 31 

39 

39 

39 

39 

39 

2 

2 

2 

2 

2 

2 

Scenario 1 (10% decrease) 

227 

151 

98 

59 

62 

138 

191 

230 

289 

289 

115 106 

84 137 

221 

221 

221 

221 

17 22 

39 

39 

39 

39 

39 

2 

2 

2 

2 

2 

2 

Scenario 2 (5% decrease) 

227 

151 

98 

59 

62 

138 

191 

230 

289 

289 

115 106 

84 137 

221 

221 

221 

221 

5 34 

39 

39 

39 

39 

39 

2 

2 

2 

2 

2 

2 

Scenario 3 (5% increase) 

227 

151 

98 

71 

62 

138 

191 

204 

187 14 

80 14 

14 

88 

195 

105 116 

80 141 

221 

105 116 

221 

221 

39 

27 12 

12 

12 

27 

27 

39 

39 

2 

2 

2 

2 

2 

2 

Scenario 4 (10% increase) 

266 

165 

80 

23 

50 12 

50 12 

13 

13 

13 

62 

147 

276 

276 

276 

123 98 

39 98 84 

221 

221 

221 

221 

13 2 

2 

2 

1 

1 

1 

24 

37 

37 

38 

38 

38 

2 

2 

2 

2 

2 

2 
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MMAD Categorization of Heavy-Duty Trucks 

When trucks are categorized based on the MMAD, the optimum truck composition for 

different scenarios varies. MMAD categorization allows seasonal demand to be captured. For 

example, if a vehicle is driven 1,000 miles/month during the summer but remains unutilized for 

the rest of the year, the MMAD approach can capture the demand for that vehicle during the 

summer. Moreover, the MMAD categorization approach keeps vehicles with high mileage range 

categories, such as 201-250, 251-300, and 301-∞ miles/active day, allowing the agency to retain 

specific vehicles for long trips. 

Based on Tables 5.2 and 5.3, when petroleum fuel prices decline (in the baseline scenario 

and scenarios 1 and 2), the truck composition shifts from diesel trucks to B-20 trucks for all 

mileage categories within the planning horizon (except for 1-50 mile/active day category). For 

diesel trucks in the category 1-50 miles/active day category, replacing all of them with B-20 trucks 

is not feasible. To illustrate, the operating cost does not outweigh the purchasing cost since the 

category has low annual mileage. When AMAD is used, all the diesel trucks of the 1-50 

miles/active day category are replaced by B-20 trucks at the end of the planning horizon in the 

baseline scenario, scenario 1, and scenario 2. This is because trucks of the 1-50 miles/active day 

category would be driven more in a year when AMAD categorization is applied as compared to 

when MMAD categorization is applied. For scenarios 3 and 4, diesel trucks are replaced by B-20 

trucks at the beginning of the planning horizon and later by LNG trucks and electric trucks when 

approaching the end of the planning horizon. Figure 5.5 shows that the inclusion of B-20 trucks is 

higher than any other type of vehicle at the beginning of the planning horizon. At the end of the 
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planning horizon, scenario 1 (10% decrease), scenario 2 (5% decrease), and the baseline scenario 

adopt only B-20 trucks, whereas scenario 3 (5% increase) and scenario 4 (10% increase) adopt 

LNG and EV as well. Figure 5.6 shows that the number of conventional trucks gradually decreases 

over time for any of these scenarios. Figure 5.6 also demonstrates that it is not beneficial to replace 

all diesel trucks with AFVs because, for underutilized vehicles with low annual mileage, the 

benefits of low operational costs do not outweigh the high upfront costs. Figure 5.6 presents a 

comparison between AFV and conventional vehicles within the fleet, which shows that the number 

of conventional trucks is reduced for all scenarios over time. 

Figure 5.5 New truck purchases for each 5 years over time 
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Figure 5.6 Fleet composition for trucks in different years for different scenarios 

Figure 5.7 compares the cost of the FRM and RH approach for all scenarios. It can be seen 

that when the price increase rates of gasoline, diesel, and biodiesel escalate, savings also escalates. 

Figure 5.8 presents the cost-saving that results after applying the RHA to solve the FRM. The 

highest value occurs in scenario 4, where the fuel price increase rate is the highest. 

Figure 5.7 Cost comparison between baseline and the RH approach for trucks 
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Figure 5.8 Total cost saving using the RH approach for trucks 
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Table 5.2 Results of all scenarios for heavy-duty trucks of [1-50), [51-100), and [101-150) 

Year Mileage Range Category 
D

ie
se

l 

[1-50) [51-100) [101-150) 

Vehicles 
B

-2
0

L
N

G
 

Baseline Scenario 

5 48 82 6 81 78 
D

ie
se

l 
10 48 45 43 53 106 

15 38 10 29 59 19 140 

20 34 14 20 68 159 
B

-2
0

 
25 34 14 88 159 

30 32 16 88 159 

E
V

Scenario 1 (10% decrease)

5 48 82 6 105 54 

10 48 48 40 55 104 
L

N
G

 
15 38 10 34 54 37 122 

20 34 14 23 65 159 

25 31 17 88 159 
D

ie
se

l 
30 28 20 88 159 

Scenario 2 (5% decrease) 

5 48 82 6 105 54 
B

-2
0

 
10 48 48 40 55 104 

15 38 10 34 54 37 122 

20 34 14 23 65 159 
E

V
25 31 17 88 159 

30 28 20 88 159 

Scenario 3 (5% increase) 
L

N
G

 
5 48 82 6 105 54 

10 48 48 40 55 104 

15 38 10 34 54 34 118 7 

20 34 14 23 65 133 7 19 

25 31 17 65 23 79 7 73 

30 28 20 59 29 15 7 137 

Scenario 4 (10% increase) 

5 48 85 3 105 54 

10 48 54 3 3 28 55 72 11 21 

15 38 10 31 3 3 51 4 72 11 72 

20 34 10 4 3 3 82 11 148 

25 31 10 7 3 85 11 148 

30 23 10 15 3 85 11 148 

categories based on the MMAD categorization approach 
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Table 5.3 Results of all scenarios for heavy-duty trucks of [151-200), [201-250), [251-300), 

and [301-∞) categories based on the MMAD categorization approach 

Year 

Mileage Range Category 

[151-200) [201-250) [251-300) [301-∞) 

Vehicles 

D
ie

se
l

B
-2

0

E
V

L
N

G

D
ie

se
l

B
-2

0

L
N

G

D
ie

se
l

B
-2

0

L
N

G

D
ie

se
l

B
-2

0

L
N

G
 

5 

10 

15 

20 

25 

30 

5 

10 

15 

20 

25 

30 

5 

10 

15 

20 

25 

30 

5 

10 

15 

20 

25 

30 

5 

10 

15 

20 

25 

30 

Baseline Scenario 

61 

45 

56 

72 

117 

117 

117 

117 

34 41 

25 50 

75 

75 

75 

75 

14 24 

38 

38 

38 

38 

38 

8 18 

26 

26 

26 

26 

26 

Scenario 1 (10% decrease) 

59 

41 

58 

76 

117 

117 

117 

117 

36 39 

27 48 

75 

75 

75 

75 

22 16 

11 27 

38 

38 

38 

38 

13 13 

5 21 

26 

26 

26 

26 

Scenario 2 (5% decrease) 

59 

41 

58 

76 

117 

117 

117 

117 

34 41 

22 53 

75 

75 

75 

75 

19 19 

11 27 

38 

38 

38 

38 

6 20 

26 

26 

26 

26 

26 

Scenario 3 (5% increase) 

53 

40 

64 

77 

110 7 

50 7 

7 

7 

60 

110 

110 

31 44 

22 53 

75 

25 50 

75 

75 

9 29 

38 

15 23 

38 

38 

38 

26 

26 

26 

26 

26 

26 

Scenario 4 (10% increase) 

66 

40 

51 

51 26 

117 

117 

117 

117 

40 35 

35 40 

75 

75 

75 

75 

22 16 

38 

38 

38 

38 

38 

6 16 4 

26 

26 

26 

26 

26 
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AMAD Categorization of Light- and Medium-Duty Pickups 

Results of the model for pickups show that the optimal fleet composition consists of 

gasoline and E85 fueled pickups (Table 5.4). In the baseline scenario, gasoline and E85 pickups 

were preferred over diesel trucks. When the fuel price of gasoline, diesel, and B-20 declines more 

significantly than the baseline scenario (scenarios 1 and 2), the fleet composition consists only of 

gasoline pickups. This raises the question that if gasoline pickups seem profitable in terms of total 

life-cycle cost, why are diesel pickups more popular than gasoline pickups? By exploring relevant 

studies, it can be found that gasoline pickups have a lower MPG than other types of pickups, such 

as diesel pickups, which lowers the fuel cost for diesel pickups (Belzowski and Green, 2013). It 

can also be found that diesel engines have a longer lifespan than other engines (Belzowski and 

Green, 2013). The depreciation rate of diesel vehicles is also lower than that for gasoline vehicles 

(Belzowski and Green, 2013), although we have used the same depreciation rate for all types of 

pickups in this project. On the other hand, the purchasing price and resale price of diesel pickups 

are higher than gasoline pickups. The decision to introduce diesel or gasoline pickups into a fleet 

depends entirely on the answer as to whether diesel pickups are driven enough to save on fuel costs 

and balance the high initial investment over their life cycle. For this project, the annual mileage of 

pickups is not very high. Hence, despite offering low operating costs, diesel pickups are not a 

preferred choice for a fleet. 

Figure 5.9 presents the results when pickups are included in different scenarios. It was 

found that only E85 and gasoline pickups are part of the fleet composition during the entire 

planning horizon. The reason behind this adoption choice is the low annual mileage and the low 
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purchasing price of pickups. Because of the low annual mileage, the annual operating cost is low. 

Hence, the high purchasing costs of other AFVs (i.e., EVs) become the main hindrance to adopting 

these AFV options. 

Regarding E85 pickups, the purchasing price is assumed to be the same as the purchasing 

price of gasoline pickups. Hence, E85 pickups are more favorable in scenarios 4 and 5, in which 

the petroleum fuel prices go up. In other scenarios, gasoline pickups are preferred in the fleet 

composition because of the low fuel price and the low initial costs. 

Figure 5.9 New pickup purchases for each 5 years over time 

Figure 5.10 shows a visual comparison of the number of AFV and conventional pickups in 

different years of the planning horizon. As can be seen, the low prices of gasoline and diesel allow 

the fleet to maintain the operations of conventional pickups during the entire planning horizon (see 

scenarios 1 and 2). In contrast, the increase in fuel prices leads to adopting alternative fuel pickups, 

starting at the beginning of the planning horizon and moving toward their total domination at the 

end of the planning horizon (see scenarios 3 and 4). 

60 



 

 

 

 

 

   

   

    

       

       

 

 

      

Figure 5.10 Fleet composition for pickups in different years for different scenarios 

Figure 5.11 presents the advantages of the RH approach. As can be seen, the RHA provides 

a fleet composition that results in a lower cost than the cost of the fleet composition that results 

from the baseline scenario. The amount of cost-savings using the RHA is estimated in Figure 5.12. 

In scenarios 1 to 3, savings are $40-50k using the RH algorithm over the planning horizon, while 

in scenario 4, savings are greater than $110k. 

Figure 5.11 Cost comparison between baseline and the RH approach for pickups 
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Figure 5.12 Total cost savings using the RH approach for pickups 
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Table 5.4 Results of all scenarios for light- and medium-duty pickups categorized based on 

AMAD 

Year 

Mileage Range Category 

[1-50) [51-100) [101-150) [151-200) [201-250) [301-∞) 

Vehicles 

D
ie

se
l

G
as

o
li

n
e

E
8

5

D
ie

se
l

G
as

o
li

n
e

E
8

5

D
ie

se
l

G
as

o
li

n
e

E
8

5

D
ie

se
l

G
as

o
li

n
e

E
8

5

D
ie

se
l

G
as

o
li

n
e

E
8

5

G
as

o
li

n
e

E
8

5
 

5 

10 

15 

20 

25 

30 

5 

10 

15 

20 

25 

30 

5 

10 

15 

20 

25 

30 

5 

10 

15 

20 

25 

30 

5 

10 

15 

20 

25 

30 

Baseline Scenario 

5 

5 

2 

1 

1 2 

1 2 

1 5 

1 6 

1 7 

1 7 

3 4 7 

3 4 7 

4 10 

1 13 

14 

14 

1 6 1 

6 2 

5 3 

5 3 

8 

8 

13 

13 

13 

13 

13 

13 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Scenario 1 (10% decrease) 

5 

5 

2 

3 

3 

6 

8 

8 

8 

3 11 

3 11 

14 

14 

14 

14 

1 7 

1 7 

8 

8 

8 

8 

13 

13 

13 

13 

13 

13 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Scenario 2 (5% decrease) 

5 

5 

2 

3 

3 

6 

8 

8 

8 

3 11 

3 11 

14 

14 

14 

14 

1 7 

1 7 

8 

8 

8 

8 

13 

13 

13 

13 

13 

13 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Scenario 3 (5% increase) 

5 

5 

2 

1 2 

1 2 

1 5 

1 7 

1 7 

8 

3 4 7 

3 4 7 

4 10 

1 13 

14 

14 

1 1 6 

1 1 6 

8 

8 

8 

8 

13 

13 

13 

13 

13 

13 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Scenario 4 (10% increase) 

4 

4 

1 

1 3 

1 3 

1 6 

1 7 

8 

8 

3 4 7 

3 4 7 

4 10 

1 13 

14 

14 

1 1 6 

1 1 6 

8 

8 

8 

8 

13 

13 

13 

13 

13 

13 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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MMAD Categorization of Light- and Medium-Duty Pickups 

When pickups are categorized based on the MMAD, the fleet composition at the end of the 

planning horizon is similar to the fleet composition found in Table 5.5. For scenarios 1 and 2, 

gasoline pickups are the primary choices for being included in the fleet composition since the fuel 

cost and the purchasing cost are low. For scenarios 3 and 4, E85 pickups are prioritized in the fleet 

composition because of high gasoline and diesel prices and the low purchasing price of E85 

pickups. 

Figure 5.13 shows the inclusion of new AFV pickups in the fleet. Scenario 1 (10% 

decrease) and scenario 2 (5% decrease) result in pickup compositions that contain only gasoline 

and diesel pickups during the entire planning horizon. In contrast, the baseline scenario, scenario 

3 (5% increase), and scenario 4 (10% increase) lead to pickup compositions that adopt both 

gasoline, diesel, and E85 pickups at the beginning of the planning horizon. However, at the end of 

the planning horizon, compositions consist only of E85 pickups. For scenarios 1 and 2, gasoline 

and diesel pickups are selected because they have low fuel costs and low purchasing costs. For 

scenarios 3 and 4, E85 pickups are prioritized in the fleet composition because of high gasoline 

and diesel prices and their relatively low purchasing price. 

Figure 5.14 shows the changes in fleet composition. As can be seen, low prices of gasoline 

and diesel allow the fleet to maintain the operation of conventional pickups during the entire 

planning horizon (see scenarios 1 and 2); whereas the increase in fuel prices leads to the adoption 

of alternative fuel pickups, starting at the beginning of the planning horizon and moving toward 

their total domination at the end of the planning horizon (see scenarios 3 and 4). 
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Figure 5.13 New pickup purchases for each 5 years over time 

Figure 5.14 Fleet composition for pickups in different years for different scenarios 

Figures 5.15 and 5.16 present the cost-savings that are realized by applying RHA to the 

FRM model. The RH approach provided better results in terms of total costs and cost savings. 

65 



 

 

 

 

 

       

 

      

 

Figure 5.15 Cost comparison between baseline and the RH approach for pickups 

Figure 5.16 Total cost savings using the RH approach for pickups 
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Table 5.5 Results of all scenarios for light- and medium-duty pickups categorized based on 

MMAD 
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Comparison of the FRM and Current Practices 

This project adopted an optimization model to provide optimum fleet compositions for 

different fuel price scenarios over the planning horizon. As discussed, DOTs follow various 

practices for replacing their fleet. The most common practice is to use thresholds to replace 

vehicles based on vehicle age, odometer, and maintenance costs. This section demonstrates how 

the proposed optimization model can outperform current practices. For cost comparison, two 

scenarios of “fixed age” and “fixed mileage” are considered. In the fixed age scenario, trucks and 

pickups are sold when they are 15 and 5 years old, respectively. In the fixed mileage scenario, 

trucks and pickups are sold when they have been driven for 60,000 and 50,000 miles, respectively. 

For the optimization model, the baseline scenario is used and is compared with the two scenarios. 

Figure 5.17 (a) and (b) presents cost comparisons of the three scenarios (baseline, “fixed 

age,” and “fixed mileage” scenarios) of trucks when they are categorized based on AMAD and 

MMAD, respectively. The baseline scenario (FRM) provides the best cost-saving fleet 

compositions over the planning horizon since FRM considers various types of costs in the 

optimization model and provides a fleet composition that ensures the lowest cost. In contrast, 

current practices using fixed thresholds ignore various costs. As a result, current practices cannot 

provide optimal fleet compositions. Furthermore, applying the RHA to the FRM could further 

improve the results, as shown in the previous subsections. 
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(a) 

(b) 

Figure 5.17 Cost comparison between the baseline, fixed age, and fixed mileage scenarios 

for trucks categorized based on (a) AMAD, and (b) MMAD 

Figure 5.18 (a) and (b) compares the cost of the three scenarios for light- and medium-duty 

pickups when they are categorized based on AMAD and MMAD, respectively. As can be seen, 
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the baseline scenario (FRM) provides the fleet composition with the best cost savings. Applying 

the RHA to the FRM can further improve the results, as shown in the previous subsections. 

(a) 

(b) 

Figure 5.18 Cost comparison between baseline, fixed age, and fixed mileage scenarios for 

pickups categorized based on (a) AMAD, and (b) MMAD 
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Chapter Summary 

This chapter evaluated the FRM by investigating the outputs of the model for the 

previously mentioned scenarios. For trucks, B-20, LNG, and electric trucks were adopted on 

different scenarios during the planning horizon. In the case of pickups, E85 and gasoline pickups 

had received priority. Cost comparisons were made using FRM and RHA for different scenarios. 

For all the scenarios, the RH model provided higher cost-saving fleet composition decisions. This 

chapter also compared the performance of FRM and that of other practical methods by comparing 

total costs. The comparison demonstrated that FRM can provide better fleet composition decisions 

in respect of the total cost. 

The results of fleet compositions for both AMAD and MMAD categorization approaches 

were similar, as the annual mileage of each range category for both AMAD and MMAD 

categorization methods was similar for our dataset. The results would be different if there were a 

considerable difference in annual mileage for any mileage range category using AMAD and 

MMAD categorization approaches. The fleet agencies should evaluate the utilization data of the 

vehicles first to check if vehicles are utilized similarly throughout the year or seasonally. Based on 

the utilization pattern, appropriate approach of classification should be selected. 
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RECOMMENDATIONS 

Recommendations 

This project presented an optimization model that provides the optimum fleet composition 

that ensures the lowest possible cost for maintaining the fleet. In this project, multiple data sources 

were used to form our input data. A certain proportion of the data was gathered from the literature 

used to fill the gaps in the data collected from the UDOT Fleet Tracking Website 

(verizonconnect.com). As the fleet composition decision is affected by fluctuations in fuel costs, 

several different scenarios were investigated in this project to provide insight into what the fleet 

composition is at the end and during the 30-year planning horizon. Through a complementary 

study on forecasting the costs of the planning horizon, the model and the algorithm proposed in 

this project can be applied to plan for AFV adaptation for UDOT. The detailed recommendations 

of this project are as follows: 

i. In this study, two vehicle classification approaches, average mile per active day 

(AMAD) and month-wise mile per active day (MMAD), were used for categorizing 

vehicle data. AMAD and MMAD showed similar patterns of fleet composition based 

on the used dataset. AMAD approach is recommended to be used when vehicles are 

utilized at the same rate throughout the year. On the other hand, the MMAD approach 

is suggested to be used when vehicles are utilized seasonally (e.g., snowplows). 

ii. A relationship between fuel prices and the inclusion of AFVs was established. When 

gasoline, diesel, and biodiesel prices decrease over time, the inclusion of AFV is 
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slower than when fuel prices increase. In addition, AFVs were not included in the fleet 

composition for pickups when the fuel price has a descending trend. In contrast, when 

the fuel price has an ascending trend, the inclusion of AFV in the fleet is dominating. 

iii. The purchasing price of AFV and annual usage of the vehicle were found to be 

significant factors for the introduction of AFVs into the fleet. The type of AFV that is 

introduced into the model is determined by the purchase price along with the operating 

costs. AFVs offer low energy costs and low maintenance costs, which would be 

beneficial when the annual usage is high. However, in the case of low annual usage, a 

high purchase cost cannot be justified by the low operating costs within the planning 

horizon. 

Scope of Future Work 

This study demonstrated a systemic approach that can be used to handle the AFV fleet 

replacement problem. Different types of fleet replacement approaches are currently used in 

practice, a few of which use optimization models that can generate more cost-effective 

replacement solutions compared to the fixed criteria approaches (fixed age/fixed mileage). Using 

a mathematical modeling approach, this study optimized the introduction of AFVs into a fleet by 

minimizing a wide spectrum of costs associated with the purchase, operation, and maintenance of 

fleet vehicles. 

This study also implemented a Rolling Horizon (RH) optimization approach for the fleet 

replacement model to address future market changes. The RH approach allows the optimization 
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framework to account for the uncertainties in future fuel prices, the purchase price of vehicles, and 

maintenance costs by adjusting fleet replacement decisions based on the latest data available. 

This study can be extended in several ways. First, an appropriate market prediction study 

can improve the results of the model proposed, which remains for future studies. Moreover, 

calculating the salvage cost is complicated, as it changes based on several factors, such as total 

mileage, age, vehicle condition, fuel type, vehicle type, and demographic location. In this project, 

salvage cost was calculated straightforwardly. A more precise approach based on the historical 

data of UDOT’s fleet salvage costs can be used to improve the results of the proposed model. 
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